Asteroid Rendezvous Missions

An Application of Optimal Control
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Missions to Asteroids

Launch Mission [ Time (years) [ Av (m/s) ]
1978 ISEE-3 7.08 430
1989 Galileo 2.03 1300
1996 NEAR 1.36 1450
1997 Cassini 2.21 500
1998 Deep Space 1 291 1300
1999 Stardust 5.34 230
2003 Hayabusa 2.32 1400
2004 Rosetta 4.51 2200
2005 DIXI 5.63 190
2007 Dawn 3.76 10000
2014 Hayabusa 2 4.00*

2016* Osiris-Rex 2.00*

2020* ARM 4.00*
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Missions to Asteroids

Asteroid Perigee (LD) [ Diameter
Ida 680.3 31 km
Mathilde 369.7 53 km
Gaspra 326.1 18 km 5
Borrelly 188.1 8 km <
Halley 164.7 11 km N
Churyumov 153.4 4 km
Braille 1233 2 km
Eros 59.0 17 km
Itokawa 13.6 0.54 km
2006RH120 0.7 0.003 km
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Granvik et al. [2011]

» Database of 16,923 simulated minimoons
> At least one in orbit at any time (1-meter diameter)

x(LD)
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Asteroid 2006RH 5

September 2007

April 2006

Defn. temporary capture :
the geocentric Keplerian energy
E<O
the geocentric distance is less
than three Hill radii =~ 0.03 AU.

at least one full revolution
around Earth in co-rotating
frame
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Paths to solutions

Minimal fuel problem,

Minimal ime problem constrained time

\ (T —

hree body problem

Four body problem

Known
Planar Planar Spatial co(:\l:;ijlc:;d
1 Newton » 1 Newton > 1 Newton 22 Newton
GEO-L1 GEO - MM GEO - MM 3-Boost
transfer transfers transfers ransfers
from Picot[12]
\ v 4
Planar Spatial
0.2 Newton L 0.2 Newton Fixed ime Fixed time Free ime
GEOQ - MM GEO - MM 22 Newton 22 Newton 22 Newton
transfers transfers 3-Boost 3-Boost 3-Boost
L2-MM HALO2-MM HALO2-MM
transfers transfers transfers

B Patterson G Mieot ond 5. mreiorord T[Ty



Consider a general optimal control problem

x(t) = f(t, x(t), u(t))
miny()eu ftzf fo(t, x(t), u(t))dt + g(tr, xf)
X(to) =x0 € Mo C M, X(tf) =xxeM CM

In 1958, the Russian mathematician Lev Pontryagin stated a fundamental
necessary first order optimality condition, known as the Pontryagin’s
Maximum Principle.

This result generalizes the Euler-Lagrange equations from the theory of
calculus of variations.
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If uis optimal on [0, t¢] then there exists p € T; M and p® € R~ such that
(p°, p) # (0,0) and almost everywhere in [to, t¢] there holds

> z(t) = (x(t), p(t)) € T*M is solution to the pseudo-Hamilonian system

(0) = G (1), p(e),w(t)), B(0) = 51 (x(2). . (1), ()
where
H(x,p%, p,u) = p°F°(x, u)+ < p, f(x,u) > ;
» maximization condition

H(x(2), p°, p(2), u(t)) = max H(x(t), P p(t), v) ;

» transversality condition

0,
p(0) L )Mo and p(tr) — Poafi(tﬁx(ff)) L Tty Mh).
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If uis optimal on [0, t¢] then there exists p € T; M and p® € R~ such that
(p°, p) # (0,0) and almost everywhere in [to, t¢] there holds

> z(t) = (x(t), p(t)) € T*M is solution to the pseudo-Hamilonian system

(0) = G (1), p(e),w(t)), B(0) = 51 (x(2). . (1), ()
where
H(x,p%, p,u) = p°F°(x, u)+ < p, f(x,u) > ;
» maximization condition

H(x(2), p°, p(2), u(t)) = max H(x(t), P p(t), v) ;

» transversality condition

(9
8 (tf7X(tf)) 1 Tx(tf)M]_)

> A triplet (x, p, u) satisfying these 3 conditions is called an extremal
solution.
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Locally U=R" = %—’;’ =0.
Assumption : The quadratic form ‘?;u';’ is negative definite along the
extremal (x(t), p(t), u(t)).

Implicit fonction theorem

= In a neighborhood of u, extremal controls are feedback controls i.e

smooth functions
Ur(t) = ur(X(t)7p(t))

= extremal curves are pairs (x(t), p(t)) solutions of the true Hamiltonian
system

x(t) =

OH, . OH,
(X(t),p(t)), p(t) = - (X(t),p(t))

op Ox

where H, is the true Hamiltonian function defined by

H:(x, p) = H(x, p, ur(x, p)).

9/50) Asteroid Rendezvous Missions



Question : How can we verify if an extremal z(t) = (x(t), p(t)) provides a
solution to the optimal control problem ?
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Question : How can we verify if an extremal z(t) = (x(t), p(t)) provides a
solution to the optimal control problem ?

— Use a second order optimality condition
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Question : How can we verify if an extremal z(t) = (x(t), p(t)) provides a
solution to the optimal control problem ?

— Use a second order optimality condition

The variational equation
§2(t) = dH,(2).62(t)

is called the Jacobi equation along z. One calls a Jacobi field a nontrivial
solution J(t) of the Jacobi equation along z. t is said to be vertical at
time t if

dn,(z(t)).J(t) =0.
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Question : How can we verify if an extremal z(t) = (x(t), p(t)) provides a
solution to the optimal control problem ?

— Use a second order optimality condition

The variational equation
§2(t) = dH,(2).62(t)

is called the Jacobi equation along z. One calls a Jacobi field a nontrivial
solution J(t) of the Jacobi equation along z. t is said to be vertical at
time t if

dn,(z(t)).J(t) =0.
A time t. is said to be geometrically conjugate if there exists a Jacobi field
vertical at 0 and t.. In which case, x(t.), is said to be conjugate to x(0).
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Denote expt(ﬁ,) the flow of the Hamiltonian vectorfield ﬁ, One defines
the exponential mapping by

eXPso,t(P(0)) — Mx(2(t, 20)) = x(t, qo, po)

where z(t, zp), with z(0) = (x(0), p(0)) is the trajectory of H such that
2(0,20) = zo.
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Denote expt(ﬁ,) the flow of the Hamiltonian vectorfield ﬁ, One defines
the exponential mapping by

&xXPro,t(P(0)) — MNx(2(t, 20)) = x(¢, Go, po)
where z(t, zp), with z(0) = (x(0), p(0)) is the trajectory of H such that
2(0,20) = zo.

Proposition : Let xo € M, Lo = ToyM and L;: = expt(ﬁ,)(Lo). Then L; is a
Lagrangian submanifold of T*M whose tangent space is spanned by
Jacobi fields starting from Lo. Moreover q(t.) is geometrically conjugate
to xo if and only if expyx,,r. /s not a immersion at po.
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Denote expt(ﬁ,) the flow of the Hamiltonian vectorfield ﬁ, One defines
the exponential mapping by

eXPso,t(P(0)) — Mx(2(t, 20)) = x(t, qo, po)

where z(t, zp), with z(0) = (x(0), p(0)) is the trajectory of H such that
2(0,20) = zo.

Proposition : Let xo € M, Lo = ToyM and L;: = expt(ﬁ,)(Lo). Then L; is a
Lagrangian submanifold of T*M whose tangent space is spanned by
Jacobi fields starting from Lo. Moreover q(t.) is geometrically conjugate
to xo if and only if expyx,,r. /s not a immersion at po.

= calculating a conjugate point is equivalent to verifying a rank condition.
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Assume the strong regularity condition :

(S) the control u is of corank 1 on every subinterval of [0, t].
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Assume the strong regularity condition :

(S) the control u is of corank 1 on every subinterval of [0, t].

Theorem : Let t! be the first conjugate time along z. The trajectory g(.)
is locally optimal on [0, t}) in L° topology; if t > tI then x(.) is not
locally optimal on [0, t].
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Objective : use optimal control theory to compute optimal space transfers
in the Earth-Moon system

> time-minimal space transfers

> energy-minimal space transfers

First question : How to model the motion of a spacecraft in the
Earth-Moon system ?

> Neglect the influences of other planets

> The spacecraft does not affect the motion of the Earth and the Moon

> Eccentricity of orbit of the Moon is very small (=~ 0.05)
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The motion of the spacecraft in the Earth-Moon system can be modelled
by the planar restricted 3 body problem.
Description :
> The Earth (mass M;) and Moon (mass M>) are circularly revolving aroud
their center of mass G.
> The spacecraft is negligeable point mass M involves in the plane defined by
the Earth and the Moon.
» Normalization of the masses : M; + M, =1
> Normalization of the distance :d(Mi, Mb) = 1.

Figure : The circular restric-
osf ted 3-body problem. The blue

dashed line is the orbit of the
/ . ===\ Earth and the red one is the
‘ 1@ ‘ . orbit of the Moon. The trajec-
| e | tory of spacecraft lies in the
- ! plan deined by these two or-
) bits.
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Idea : Instead of considering a fixed frame {G, X, Y}, we consider a
dynamic rotating frame {G, x, y} which rotates with the same angular
velocity as the Earth and the Moon.

— rotation of angle t

()= (i)

— simplifies the equations of the model

— substitution

Figure : Comparision between
the fixed frame {G,X,Y}
and the rotating frame

' {G,x,y}.

M2

v

M1

15/50| Asteroid Rendezvous Missions



In the rotating frame

> define the mass ratio p = M1A~/,+2M2

> the Earth has mass 1 — u and is located at (—u,0);
> the Moon has mass p and is located at (1 — p,0);

» Equations of motion

X—2y—x= %
y+2x—y=57
where
—V :is the mechanical potential
1—
V= 3M + %
03 03

01 : distance between the spacecraft and the Earth

o1 = /(x40 + 52

02 :distance between the spacecraft and the Moon

02 = \/(x =1+ p)2+y2
1650 R e



There are 5 possible regions of motion, know as the Hill regions

Each region is defined by the value of the total energy of the system

Figure: The Hill regions of the planar restricted 3-body problem

Toplogy/Shape of the regions is determined with respect to the total
energy at the equilibrium points of the system
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Critical points of the mechanical potential

i v _ av
— Points (x,y) where 52 = 5% =0

> Euler points : colinear points Ly,L», L3 located on the axis y = 0, with
x1 ~ 1.1557, xp ~ 0.8369, x; ~ —1.0051.
> Lagrange points : La, Ls which form equilateral triangles with the primaries.

= Ly

“\ Moon's
\\ orbit around
\Earth W
i :
S XLS

Figure: Equilibrium points of the planar restricted 3-body problem
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Control on the motion of the spacecraft?

— Thrust/Propulsion provided by the engines of the spacecraft

— control term u = (u1, u2) must be added to the equations of motion
— controlled dynamics of the spacecraft

X—2y —x= 0% +
y_|_2X_y: 8—y—|—U2.
Setting g = (x,y, X, y)
— bi-input system

g = Fo(q) + F1(q)ur + F2(q)u2

where
q3
qa
Fo(q) = 2qa +q1 — (1 — /J)((qﬁ[:;iq%)% - M((qrqll;:)ziqg)% )
R SR s S TS
F@) = 2, Fa() = 2

8(]3 - 87614
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Objective : minimizing transfer time between geostationary orbit O¢ and a
circular parking orbit O, around the Moon when low-thrust is applied.

— solve the the optimal control problem
g = Fo(q) + e(F(q)ur + F2(q)uz),€ > 0
Miny()eBy,(0,1) ff:,f dt

q(0) € Og, q(tr) € Or.

where € = bound on the control= maximum thrust allowed
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This optimal control problem problem can not be solved analytically
> Highly non-linear

> Singularities
— Approximate low-thrust optimal solutions

> Apply Pontryagin’s Maximum Principle (necessary conditions)

> Turn the pseudo-Hamiltonian system into a true Hamiltonian system
(Implicit function Theorem)

> Use shooting method to compute extremal curves of the problem

> Check local-optimality of these extremals by using second order optimality
condition
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This optimal control problem problem can not be solved analytically
> Highly non-linear
> Singularities

— Approximate low-thrust optimal solutions

> Apply Pontryagin’s Maximum Principle (necessary conditions)

> Turn the pseudo-Hamiltonian system into a true Hamiltonian system
(Implicit function Theorem)

> Use shooting method to compute extremal curves of the problem

> Check local-optimality of these extremals by using second order optimality
condition

— compute the first conjugate time along each extremal and very that it is
greater than the transfer time
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Idea : Writing boundary and transversality conditions in the form

R(z(0),z(tr)) =0,
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Idea : Writing boundary and transversality conditions in the form
R(2(0), 2(r)) = 0,
= the boundary value problem from the Pontryagin's Maximum Principle

becomes
{ 2= Hy(2(1))
R(z(0),z(tr)) = 0.
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Idea : Writing boundary and transversality conditions in the form
R(2(0), 2(r)) = 0,
= the boundary value problem from the Pontryagin's Maximum Principle

becomes
{ 2= Hy(2(1))
R(z(0),z(tr)) = 0.

The initial condition xo is fixed.
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Idea : Writing boundary and transversality conditions in the form
R(2(0), 2(r)) = 0,
= the boundary value problem from the Pontryagin's Maximum Principle

becomes
{ 2= Hy(2(1))
R(z(0),z(tr)) = 0.

The initial condition xo is fixed.

Define the shooting function as the mapping

E : po — R(zo, z¢,).
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becomes
{ 2= Hy(2(1))
R(z(0),z(tr)) = 0.

The initial condition xo is fixed.

Define the shooting function as the mapping
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= Goal : to determine a zero of E
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Idea : Writing boundary and transversality conditions in the form
R(2(0), 2(r)) = 0,
= the boundary value problem from the Pontryagin's Maximum Principle

becomes
{ 2= Hy(2(1))
R(z(0),z(tr)) = 0.

The initial condition xo is fixed.

Define the shooting function as the mapping
E : po — R(zo, z¢,).

= Goal : to determine a zero of E

Remark : u.(x, p) is smooth
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Idea : Writing boundary and transversality conditions in the form
R(2(0), 2(r)) = 0,
= the boundary value problem from the Pontryagin's Maximum Principle

becomes
{ 2= H(z(1))
R(z(0),z(tr)) = 0.
The initial condition xg is fixed.
Define the shooting function as the mapping

E : po — R(zo, z¢,).

= Goal : to determine a zero of E
Remark : u.(x, p) is smooth

= E is smooth
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Idea : Writing boundary and transversality conditions in the form
R(2(0), z(t)) = 0,
= the boundary value problem from the Pontryagin's Maximum Principle
becomes
{ 2= H(z(t))
R(z(0),z(tr)) = 0.

The initial condition xo is fixed.

Define the shooting function as the mapping
E : po — R(zo, z¢,).

= Goal : to determine a zero of E
Remark : u.(x, p) is smooth
= E is smooth

= one can use a Newton type algorithm.
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Problem : To ensure the convergence of the Newton method, we need a
precise guess for the initial condition pp we are searching.
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Problem : To ensure the convergence of the Newton method, we need a
precise guess for the initial condition pp we are searching.

Idea : Consider H, as the element H; of a family (Hx)ae[,1j of smooth
Hamiltonians.
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Problem : To ensure the convergence of the Newton method, we need a
precise guess for the initial condition pp we are searching.

Idea : Consider H, as the element H; of a family (Hx)ae[,1j of smooth
Hamiltonians.

= build a one-parameter family (Ex)xejo,1) of shooting functions such
that the shooting function associated with Ej is easy to solve.
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Problem : To ensure the convergence of the Newton method, we need a
precise guess for the initial condition pp we are searching.

Idea : Consider H, as the element H; of a family (Hx)ae[,1j of smooth
Hamiltonians.

= build a one-parameter family (Ex)xejo,1) of shooting functions such
that the shooting function associated with Ej is easy to solve.

Scheme :
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Problem : To ensure the convergence of the Newton method, we need a
precise guess for the initial condition pp we are searching.

Idea : Consider H, as the element H; of a family (Hx)ae[,1j of smooth
Hamiltonians.

= build a one-parameter family (Ex)xejo,1) of shooting functions such
that the shooting function associated with Ej is easy to solve.

Scheme :

1. Setting A\ = 0, one computes the extremal z(t) on [0, t¢] starting from
z(0) = (qo, PY) using a simple shooting method.
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Problem : To ensure the convergence of the Newton method, we need a
precise guess for the initial condition pp we are searching.

Idea : Consider H, as the element H; of a family (Hx)ae[,1j of smooth
Hamiltonians.

= build a one-parameter family (Ex)xejo,1) of shooting functions such
that the shooting function associated with Ej is easy to solve.

Scheme :
1. Setting A\ = 0, one computes the extremal z(t) on [0, t¢] starting from
z(0) = (qo, PY) using a simple shooting method.

2. One chooses a discretization 0 = Ao, A1,..., Ay = 1 such that the
shooting function is solved iteratively at A\j;1 from A;.
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precise guess for the initial condition pp we are searching.

Idea : Consider H, as the element H; of a family (Hx)ae[,1j of smooth
Hamiltonians.

= build a one-parameter family (Ex)xejo,1) of shooting functions such
that the shooting function associated with Ej is easy to solve.

Scheme :

1. Setting A\ = 0, one computes the extremal z(t) on [0, t¢] starting from
z(0) = (qo, PY) using a simple shooting method.

2. One chooses a discretization 0 = Ao, A1,..., Ay = 1 such that the
shooting function is solved iteratively at A\j;1 from A;.

3. One builds up a sequence pg,. . .,p(’)\’ with zeros of shooting functions
Exg. - Exy-
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Problem : To ensure the convergence of the Newton method, we need a
precise guess for the initial condition pp we are searching.

Idea : Consider H, as the element H; of a family (Hx)ae[,1j of smooth
Hamiltonians.

= build a one-parameter family (Ex)xejo,1) of shooting functions such
that the shooting function associated with Ej is easy to solve.

Scheme :

1. Setting A\ = 0, one computes the extremal z(t) on [0, t¢] starting from
z(0) = (qo, PY) using a simple shooting method.

2. One chooses a discretization 0 = Ao, A1,..., Ay = 1 such that the
shooting function is solved iteratively at A\j;1 from A;.

3. One builds up a sequence pg,. . .,p(’)\’ with zeros of shooting functions
Exg. - Exy-

4, p(’)\’ is the zero that we wanted to determine.
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Theorem :For each ), the exponential mapping eXPon,tf is of
textitmaximal rank if and only if the point x1 = expy, ., (p(0)) is
non-conjugate to xo. Moreover, solutions of the parametrized shooting
equation cor)tain a smooth curve which can be parametrized by A and the
derivative Ey can be computed integrating the Jacobi equation.

= convergence of the smooth continuationis guaranteed if there is no
conjugate point along any extremal curve zy,.
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. .. . tr
Time-minimal problem MinyeB,, (0,¢) ffo dt
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. .. . tr
Time-minimal problem MinyeB,, (0,¢) ffo dt

Maximization condition
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Time-minimal problem min,cp 2(0,6) ffo dt

Maximization condition

= if (:"I;[7 Hz) 75 0, we have
H;

uj = with Hi(q, p) =< p, Fi(q) >
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Time-minimal problem min,cp 2(0,6) ffo dt

Maximization condition

= if (:"I;[7 Hz) 75 0, we have
H;

Normal case p°® # 0

with Hi(q, p) =< p, Fi(q) >
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Time-minimal problem min,cp 2(0,6) ffo dt

Maximization condition
= if (:"I;[7 Hz) 75 0, we have

H;

Normal case p°® # 0

uj = with Hi(q, p) =< p, Fi(q) >

= Normalization p° = —1
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Time-minimal problem min,cp 2(0,6) ffo dt

Maximization condition
= if (:"I;[7 Hz) 75 0, we have

H;

Normal case p°® # 0

uj = with Hi(q, p) =< p, Fi(q) >

= Normalization p° = —1
= one obtains the true Hamiltonian

H,(z) = =1+ Ho(z) + 1/ (H?(z) + H23(2)).
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Time-minimal problem min,cp 2(0,6) ffo dt

Maximization condition
= if (:"I;[7 Hz) 75 0, we have

H;

NCET

Normal case p°® # 0

uj = with Hi(q, p) =< p, Fi(q) >

= Normalization p° = —1

= one obtains the true Hamiltonian
Hi(2) = —1 + Ho(z) + \/(H2(2) + H2(2)).

Continuation on ¢ (maximal thrust)
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Time-minimal problem min,cp 2(0,6) ffo dt

Maximization condition
= if (:"I;[7 Hz) 75 0, we have

H;

Normal case p°® # 0

uj = with Hi(q, p) =< p, Fi(q) >

= Normalization p° = —1

= one obtains the true Hamiltonian
Hi(z) = =1+ Ho(z) + 1/ (H}(2) + H3(2)).
Continuation on ¢ (maximal thrust)

Compute Earth-L; trajectories prior to Earth-Moon trajectories
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(a) Fixed frame

Figure: Thrust=1N. Red curve : time-minimal transfer to L;. Green curve : orbit of
the Moon.
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(a) Fixed frame

Figure: Thrust=0.08N. Red curve : time-minimal transfer to L. Green curve :orbit of
the Moon.
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(a) Rotating frame (b) Fixed frame

Figure: Thrust=1.Red curve : time-minimal transfer to a circular orbit around the
Moon. Green curve :orbit of the Moon. Blue curve : circular parking orbit around the
Moon
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(a) Rotating frame (b) Fixed frame

Figure: Thrust=0.08. Red curve : time-minimal transfer to a circular orbit around the
Moon. Green curve :orbit of the Moon. Blue curve : circular parking orbit around the
Moon
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Objective : minimizing energy-cost of a transfer between geostationary
orbit O¢ and a circular parking orbit O, around the Moon.
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Objective : minimizing energy-cost of a transfer between geostationary
orbit O¢ and a circular parking orbit O, around the Moon.

— minimizing the [*-cost of the control u along the transfer
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Objective : minimizing energy-cost of a transfer between geostationary
orbit O¢ and a circular parking orbit O, around the Moon.

— minimizing the [*-cost of the control u along the transfer

— solve the the optimal control problem

g = Fo(q) + F1(q)u1 + F2(q)u2
minu(‘)E]Rz ft: Uf + U%dt

q(O) € Og, q(tf) € Oy.
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Energy-minimal problem min,cg2 ft: U 4 u3dt
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Energy-minimal problem min,cg2 ft: U 4 u3dt

Maximization condition
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Energy-minimal problem min,cg2 ft: U 4 u3dt

Maximization condition

= ui = H;
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Energy-minimal problem min,cg2 ft: U 4 u3dt

Maximization condition
= ui = H;
Normal case p® # 0
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Energy-minimal problem min,cg2 ft: U 4 u3dt

Maximization condition
= ui = H;
Normal case p® # 0

= Normalization p° = —1
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Energy-minimal problem min,cg2 ft: U 4 u3dt

Maximization condition

= u; = H,;

Normal case p® # 0

= Normalization p° = —1

= one obtains the true Hamiltonian

H(2) = Ho(2) + 5 (HE(2) + HB (2))
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.. . t
Energy-minimal problem min,cg2 ftof U 4 u3dt
Maximization condition

= ui = H;

Normal case p® # 0

= Normalization p° = —1

= one obtains the true Hamiltonian
1
H:(z) = Ho(z) + 5("’12(2) + H3(2)).

Continuation on p (mass ratio)
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.. . t
Energy-minimal problem min,cg2 ftof U 4 u3dt
Maximization condition

= ui = H;

Normal case p® # 0

1

= Normalization p° = —1

= one obtains the true Hamiltonian
1
H(2) = Ho(2) + 5 (HE(2) + HB (2))
Continuation on p (mass ratio)

Compute Earth-L; trajectories prior to Earth-Moon trajectories
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(a) Rotating frame (b) Fixed frame

Figure: u=0. Red curve : energy-minimal transfer to L;. Green curve : orbit of the
Moon.
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(a) Rotating frame (b) Fixed frame

Figure: u = 1.2153e — 2. Red curve : energy-minimal transfer to L. Green curve :
orbit of the Moon.
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(a) Rotating frame (b) Fixed frame

Figure: p=0. Red curve : energy-minimal transfer to a circular orbit around the Moon.
Green curve :orbit of the Moon. Blue curve : circular parking orbit around the Moon
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(a) Rotating frame (b) Fixed frame

Figure: u = 1.2153e — 2. Red curve : energy-minimal transfer to a circular orbit
around the Moon. Green curve :orbit of the Moon. Blue curve : circular parking orbit
around the Moon
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Gravitational model : 3 bodies

Szebehely [1967] Circular restricted three-body problem

—_ 9y _ OV
X =2y — 5"
— oy _ 9V
y =-2x 5y
. BV
Z= "z

where V is the potential energy function :

2 21— 1—
—V:X Ty +J+ﬂ+u
and 2 P1 P2 2
O p2=/(x =1+ p)?+y* + 22
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Gravitational model : 4 bodies

Simé et al. [1995] Circular restricted four-body problem

to Sun

Sun at (rs cos 0, rssin 0) with mass ps

: 1Y
X=2y— ¢
v oV,
y=-2x— a—y“
= OV,
z=-%
where
Vi=V V., Va(t) = 22— (xcos0 + ysin0)

Ps rs

ps = \/(X —rsc0s0)2 + (y — rssin0)2 + 22, s = 329012.5, rs = 389.2,
0=ws=-0925 —  0(t) =wst+ 0
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Notation and drift equations

State variables : s(t)
_ [ a(t) v
X(t) = ( () ) m((tt))

Uncontrolled system :

X
y
V4
X=Fo(X)= | & +x—(1~ M)%‘L - fog” _MSX7’;§.050 — % cosf)
“2%+y—(1- ,u)p%; — upy—g f,usyi_’;;"g — %sin&
—( =) —pgy —ps s
0
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Control system

Control variables : ur(t)

u(t) = up(t) ;o Jull <1, weld
U3(t
Set of admissible controls :

= . _u measurable, |Ju(t)|| = @(t) for a sequence
u‘{"‘R_’BW(O’l)' of times 0 < t; < to < t3 < tg < tr

Ev(t) = { []5’ te [07t1]U[t27 t3]U[t4,tf] }

, otherwise

[lull

0o Gt ot

ti,i = 1..4 are called switching times
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Minimal fuel problem

We can now state the minimal cost problem :

min, ez o llu(t)|dt ,

X = Fo(X) + 125 52| 4 F; — T ]ul[Fs
q(0) = qgpre, m(0) = mo

q(tf) = Qrdvz, e(tf) = Ordvz

(*)o

D is the problem data

D= (tfv Qdprt  Qrdvz, erdvz)
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Pontryagin maximum principle

(Pontryagin [1962]) Let (X,u) be an optimal pair for (x)p.
Then there exists an absolutely continuous function P(-), called the costate vector,
and a constant pg <0, (P, pg) # (0,0), such that for a.e. t we have :

Pseudo-Hamiltonian Equations :

oMy _oH
oX oP
where H(t, P, X,u) = po|lul| + (P, X).
Maximization Condition :
H(t,P(t), X(t),u(t)) = max H(t,P(t),X(t),v)
vEB,3(0,1)

23 (0,
Transversality Condition :

P(0) L Tx(o)Mo, P(tr) L Tx()Ms

A solution (P, X, u) is called an extremal.
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AV at rendezvous (m/s)
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AV at continuation points (m/
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Visualization research

Further questions :
» Why were some transfers better than others?
» What characterizes a good candidate asteroid ?

» What some general features that allow low cost transfers?

This prompted exploratory work using visualization and statistical analysis.
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Visualization demo

Key
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Metadata
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Observations and hypotheses

Potential predictors based on visualization and talks with industry :

> Average energy

» Average velocity

> Planarity

» Lunar planarity

> Z-displacement

» Distance from barycenter
» Eccentricity

> Average curvature
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Statistical results

The most important factors were :

> Average energy
> Lunar planarity
» Variance of distance from barycenter

[include other graphs here]

900

800

16 14 12 4 -08 06 -04 02 0
Average Minimoon CR3BP Energy
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Conclusions

The following are fair predictors of good transfers :

> Low average energy relative to the departure energy (from earth-moon L)
» Minimoon trajectories that lie mostly in the lunar plane

» Roughly circular geocentric orbits

For mission design, this implies that parking an array of spacecraft at various
energy levels could be a viable solution to maximize low cost interceptions.
Furthermore, prioritizing minimoons with roughly moon-like orbits could help
reduce fuel costs. This has implications for missions like NASA's ARM as well.
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